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Abstract A new fragment picker has been developed for

CS-Rosetta that combines beneficial features of the original

fragment picker, MFR, used with CS-Rosetta, and the

fragment picker, NNMake, that was used for purely

sequence based fragment selection in the context of

ROSETTA de-novo structure prediction. Additionally, the

new fragment picker has reduced sensitivity to outliers and

other difficult to match data points rendering the protocol

more robust and less likely to introduce bias towards wrong

conformations in cases where data is bad, missing or

inconclusive. The fragment picker protocol gives signifi-

cant improvements on 6 of 23 CS-Rosetta targets. An

independent benchmark on 39 protein targets, whose NMR

data sets were published only after protocol optimization

had been finished, also show significantly improved per-

formance for the new fragment picker (van der Schot et al.

in J Biomol NMR, 2013).

Keywords Protein structure � NMR � Sparse data �
Chemical shifts

Introduction

The CS-Rosetta methodology for protein structure deter-

mination from sparse data from nuclear magnetic reso-

nance (NMR) spectroscopy (Raman et al. 2010b; Sgourakis

et al. 2011; Lange and Baker 2012; Lange et al. 2012).

Remarkably, for small proteins (\15 kDa) chemical shift

data alone can be sufficient to yield 3D protein structures

with near-atomic accuracy (Cavalli et al. 2007; Shen et al.

2008; Wishart et al. 2008). CS-Rosetta and related methods

(Cavalli et al. 2007; Shen et al. 2008) are based on a

fragment assembly algorithm (Kraulis and Jones 1987;

Simons et al. 1997; Delaglio et al. 2000; Rohl et al. 2004).

A fragment denotes a small continuous piece (typically

comprising 3–15 residues) of protein backbone with

defined 3D structure, which is given by its /;w and x
torsion angles. Given libraries of fragments starting at each

residue position of the target protein’s backbone, the

fragment assembly algorithm can efficiently generate a

wide variety of compactly folded structural models. A

small percentage of accurate fragments usually suffices to
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generate a few models close to the native protein structure

in a large-scale sampling approach. After all-atom refine-

ment of the fragment-assembled models, CS-Rosetta can

often identify the correct models based on its energy

function augmented by a comparison of back calculated

chemical shifts with the experimental data (Shen et al.

2008).

Fragment picking for CS-ROSETTA was originally car-

ried out using the fragment picker of the multiple fragment

replacement (MFR) method of the NMRPipe software pack-

age (Delaglio et al. 1995), which combined chemical shift

information with peptide sequence matching to score frag-

ment candidates. MFR selects fragments from a database of

crystal structures based on three scores, (1) chemical shift

similarity between the target’s experimentally measured shifts

and values predicted for the database structures (CS), (2)

sequence identity between target and database (Identity), and

(3) the phi/psi probability of the database angles given the

target’s sequence (Rama). These scores are weighted such that

the CS component dominates, which indirectly leads to a

strong and largely accurate constraint on secondary structure

during fragment selection. However, in contiguous regions

with incomplete chemical shifts, the relative contribution of

the chemical shift score was decreased, and without its con-

straint on secondary structure the Rama score term ended up

providing a bias towards helices in all cases. This issue is

mitigated in the hybrid-CS-Rosetta fragment picker (Shen

et al. 2009a), where fragments for regions with insufficient

chemical shift data are instead selected using the Rosetta2

fragment picker, R2FP:NNMAKE (Simons et al. 1997; Rohl

et al. 2004), which picks fragments based on sequence profile

(Altschul et al. 1997) and sequence based secondary structure

predictions (Jones 1999; Meiler et al. 2001; Karplus et al.

2003). This substitution removes the helical bias of the MFR

Rama score, but introduces sequence based secondary struc-

ture assignments, which have the potential to disagree with the

experimental data.

In the present work, a new algorithm is introduced

which combines salient features of both original algo-

rithms, MFR and R2FP:NNMAKE, while introducing new

concepts for the scoring of possible fragment candidates.

The new fragment picker, denoted R3FP in the following,

was specifically designed with the goal of only providing

constraints where they are justified by experimental data. In

contrast to its predecessors, R3FP selects a diverse set of

fragments in regions where the data is limited, only con-

strained by what is reasonable given the sequence. We also

used this as an opportunity to recode the MFR fragment

picker in C?? within the Rosetta3 software framework

(Leaver-Fay et al. 2011), producing a versatile platform for

future development. This should allow to implement and

test alternative approaches to fragment picking (Kalev and

Habeck 2011) in conjunction with chemical shift data.

Methods

Development

The CSRosetta3 fragment picker was developed over a

series of five steps, where scores were added, reformulated,

and reweighted in order to improve the fragment quality as

measured by their backbone RMSDs to the target reference

structures. Two main quality metrics were used when

comparing protocols, the average RMSD of the best 5 % of

fragments at each residue position, and the average of the

worst 5 % (Fig. 1). The weight ranges tested for each final

score are described in Suppl. Tab. 1.

Fragment benchmark

A set of training protein targets was assembled from three

previous studies, (1) the original MFR training set

(Kontaxis et al. 2005), (2) a previous benchmark of CS-

Rosetta together with pseudocontact shift data (PCS;

Schmitz et al. 2012), and (3) targets from the CASD

experiment (Rosato et al. 2012). The R3FP fragment

picker will be evaluated by comparing against MFR

fragments. For original MFR targets and PCS targets we

use homolog filtering with comprehensive lists of homo-

logs (Schmitz et al. 2012). The CASD targets come from

a blind prediction challenge, and for those targets no

homolog filtering was used. The benchmark targets are

further described in Suppl. Tab. 2.

RMSD quality metrics

Fragment quality was quantified by the coordinate RMSD

of all backbone heavy-atoms when compared to the refer-

ence structure at the respective backbone position. The

average fragment quality is given by the average RMSD

over the entire population of fragments, while best and

worst fragment metrics are given by the average RMSD

over either the best or worst 5 % of fragments by RMSD at

a given position.

Secondary structure quality metric

The secondary structure of each residue in a given frag-

ment is taken from the DSSP assignment (Kabsch and

Sander 1983) in the crystal structure the fragment derives

from. These assignments were compared against the DSSP

assignments in the target reference structure. The per-

centage of fragment-residues whose assignment matches

those of the corresponding target-residues yields the sec-

ondary structure quality metric of a fragment.
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Structural modeling benchmark

CS-Rosetta was run using standard command lines (Shen

et al. 2008) using either the original MFR or the new R3FP

fragments. For the fragment picker benchmark a diverse

assortment, based on length, secondary structure, and CS-

Rosetta’s performance, was selected from targets used in

previous studies involving the MFR fragment picker (SI

Table).

Ca. 4000 CPU-hours were devoted to each run, which

produces different numbers of models, depending on the

target’s size and Rosetta’s ability to produce models that

satisfy its basic quality filters, ranging from roughly six

thousand to forty thousand models. Ca-RMSDs to the ref-

erence structures were calculated to assess model quality.

A bootstrap analysis was used to determine the standard

deviation of the best 0.1 % by Ca-RMSD.

Fragment picking (final protocol)

The fragment picker uses the default bounded protocol as

in the previously reported Rosetta3 generalized fragment

picker (Gront et al. 2011), which prepares 9-mer and 3-mer

fragment files by selecting the lowest scoring 200 frag-

ments for each residue position. A database of *2.3 mil-

lion fragment candidates has been generated from 9,523

proteins, comprising the same set as used previously (Shen

et al. 2009a). Derived data have been attached to each

database residue as follows: Sequence profiles from PSI-

BLAST (Altschul et al. 1997), predicted secondary chem-

ical shifts from SPARTA? (Shen and Bax 2010) and

secondary structure assignments from DSSP (Kabsch and

Sander 1983). For each target, every residue in the database

is scored against every residue in the target sequence using

the five independent scoring functions detailed below. The

calculations use the same input data as the previous MFR

(Kontaxis et al. 2005) method, but scoring is performed

differently as detailed in the following. Instructions for

running the final protocol are provided in Suppl. Text 1.

Results

Development process

Stage 1: rebuilding the CS score on its own

MFR CS-score: Md We began by seeking to optimize the

selection of fragments using chemical shifts alone. To

compute the MFR CS-Score, the experimental backbone

(C,Ca,Cb,N,HN,Ha) chemical shifts for each target are

converted into secondary shifts (Wishart et al. 1995) and

scored for similarity versus the database’s predicted sec-

ondary shifts (Kontaxis et al. 2005).

Md ¼
XNDB

shifts

dT � dDB

DdDB

� �2

ð1Þ

with dT, dDB and DdDB as the target shift, database shift,

and prediction error, respectively.

Analysis of fragment candidate ranking using the MFR

chemical shift score Md revealed that precise matches of all

the data dominate in the better half of fragments; differ-

ences in a few non-matching data points dominate the

ranking within the worse half of fragments. This results

Fig. 1 Fragment RMSDs during the development process. The

RMSD-fragment metrics (‘‘Methods’’) were computed at each stage

during the development process, and their relative change compared

to the MFR reference. The stages reflect discrete steps during the

development phase and correspond to (0) MFR’s original CS score

(Eq. 1), no sequence or RAMA components (1) R3FP’s new

sigmoidal CS Score (Eq. 3) (2) Added preliminary versions of

sequence (Eq. 4), Ramachandran (Eq. 6), and TALOS? secondary

structure (Eq. 7) scores. (3) Optimized A and B constants in

sigmoidal CS score (Eq. 1) (4) Added TALOS? phi/psi score

(Eq. 8) and reformulated secondary structure score (Eq. 9). The

individual stages are discussed in detail in the ‘‘Results’’ section
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from the use of a harmonic potential for the error between

predicted and calculated chemical shifts, which results in

high penalties for a few or even individual badly matching

data points.

CS-score: Id To avoid distorting the overall score by a

few non matching positions, we experimented with a sig-

moid potential,

S x; a; bð Þ ¼ 1

1þ e�axþb
ð2Þ

that better reflects the error distribution of deviations than

the original harmonic penalty function (Eq. 1; Kontaxis

et al. 2005) and final scores range from *0 for a perfect

match, to *1 for a failure to match. When comparing

fragments against each other, this serves to rank fragments

based on how many database shifts match the target,

ignoring the extent of differences once they fail to match.

To count the number of database shifts dDB that failed to

match the target chemical shifts dT within their prediction

error DdDB, we define

Id ¼
NT

NDB

XNDB

shifts

S
dT � dDBj j

DdDB

; 2; 4

� �
ð3Þ

with S the sigmoid function defined above (Eq. 2), and NDB

and NT the number of comparable shifts available in the

database or target, respectively. Systematically lower

scores for residues where Cb shifts are compared against

database glycines are avoided by normalizing with NT/NDB.

As shown in Fig. 2, the deleterious effect of individual

bad matches to the input data that dominated the harmonic

CS-score in MFR leads to a large number of bad matching

(by RMSD) outlier fragment candidates that score signifi-

cantly lower than the correct fragment candidates. This

problem is significantly reduced using the new CS-Score.

With the improved score, high-RMSD fragment candidates

no longer score significantly lower than low-RMSD frag-

ment candidates, and only a handful of high-RMSD can-

didates score similar to low-RMSD fragment candidates.

This improvement is reflected in the overall performance of

the new CS-score as indicated in Stage 1 in Fig. 1: worst

fragment RMSD is significantly improved, from 133 to

113 % of the full MFR reference for 3mers and from 115 to

107 % for 9mers.

Stage 2: addition of sequence profile, Ramachandran,

and secondary structure scores

We next incorporated score terms for sequence identity

(Profile), Ramachandran compatibility (Rama) and sec-

ondary structure (SS) as present in the original fragment

pickers MFR and R2FP:NNMAKE.

ProfileScore: Ip For sequence identity, the Profile-Score

from R2FP:NNMAKE (Rohl et al. 2004; Shen et al. 2009a)

was used, which compares the sequence profiles of two

residues according to their L1 block distance. It is given by

the Manhattan distance of the target residue’s sequence

profile PT, computed using PSIBLAST, to the candidate

residues profile PDB.

Ip ¼
X

aa

jPT � PDBj ð4Þ

This is superior to MFR’s matrix based sequence

identity score (Kontaxis et al. 2005), as it compares

residues based on conserved sequence profiles rather than

just residue similarity.

RamaScore: MR and IR MFR’s Ramachandran score

computes the log-likelihood of a candidate residues /;w
positions given the residue type (aa) at the respective

sequence position. Accordingly,

MR ¼
X

k2 h;e;lf g
� log

R /;w; k; aað Þ
RmaxðaaÞ

� �
; ð5Þ

where R /;w; k; aað Þ is the Ramachandran density for the

given residue type aa, secondary structure type k and tor-

sion angles /;w. Rmax (aa) is the maximum observed

density for that residue type.

For the new fragment picker, this score was reformu-

lated as the sigmoid of the density in order to flatten out the

extremes and reduce its helical bias. Additionally, we

weighted the score-contributions from different secondary

structure types using the TALOS? predicted (Shen et al.

2009b) secondary structure propensities PTSS for helix,

sheet and loop (h,e,l). This yields,

IR ¼ S
X

k2 h;e;lf g
log R /;w; k; aað ÞPTSSðkÞ½ �; 1; 0

0

@

1

A ð6Þ

evaluating to near-zero for allowed angles, and near-one

for angles that are unlikely to occur.

SS-similarity-score Finally, the secondary structure score

from R2FP:NNMAKE was added but with the chemical

shift based secondary structure profiles PTSS as its input,

instead of the purely sequence based prediction used by

R2FP:NNMAKE. We compute

ISS ¼ 1� PTSS kDSSPð Þ ð7Þ

where kDSSP denotes the DSSP (Kabsch and Sander 1983)-

assigned secondary structure (helix, sheet or loop).

Optimization stage 2 Weights were chosen by first

matching each scores dynamic range to the equivalent

ranges observed for MFR, and then varying individual
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scores in order to manually reduce best fragment RMSDs.

The additional information provided by these scores

improved best, average and worst fragment RMSD metrics

(Stage 2 of Fig. 1). The best fragments were 2.4 and 7.2 %

lower than the MFR reference for the 9mers and 3mers,

respectively, while the average fragment RMSD was 4.3 %

lower for the 9mers and equal to the reference for the

3mers.

Stage 3: CS score optimization

During the initial development of the CS-Score we

assigned preliminary constants for the sigmoid potential by

roughly fitting the lowest scoring region (highest similar-

ity) to the harmonic used by MFR. In order to empirically

determine the best slope and inflection point for

discriminating between shifts in the context of the scores

added in stage 2 we then optimized the weight constants of

the sigmoidal CS-Score. We performed a grid search of the

two constants which define the sigmoid curve S(x,a,b) of

the CS-Score Id defined above (Stage 1). We varied a and

b in the ranges 1–5 and 3–7, respectively, with steps of 1

(Suppl. Fig. 1). The constants control which shifts are

considered as matched, unmatched, or partially matched,

and set the slope for discriminating between different

partial matches. The optimized constants resulted in an

overall improvement to the 9mers but made the 3mers

worse by a similar margin (Stage 3 of Fig. 1). Despite the

bad performance on 3mers the optimized constants were

used in the final protocol since 9mers make a larger con-

tribution towards final structure quality in Rosetta fragment

assembly (Handl et al. 2011).

Fig. 2 Comparison between the harmonic MFR CS-score and the

sigmoidal R3FP version. a The harmonic (Eq. 1) versus sigmoidal CS

score (Eq. 3) functions are plotted against normalized shift deviation

to demonstrate that the curves are similar when distances between

observed and database shifts are low while the sigmoidal score soon

plateaus as the distances grow larger. b Fragment CS-scores versus

fragment RMSD to reference structure are shown for all fragments in

the MFR (red) and R3FP (blue) sets, for fragments containing at least

four shifts per residue. Overall the scores are similar, though the

R3FP score (Eq. 3) has significantly less low scoring fragments above

2 Å. c The fragment scores versus RMSD, as before, but from the

single target ARGN, with fragments from residue 38 being high-

lighted in green to show how the subtle differences between scores

appear in different contexts. Low scoring, high RMSD outliers appear

to be a common problem with MFR

J Biomol NMR (2013) 57:117–127 121
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Stage 4: addition of phi/psi score and secondary structure

score reformulation

Phi/psi-squarewell: I/w A fifth score was added to

incorporate the chemical shift based phi/psi predictions that

TALOS? provides alongside the secondary structure pre-

dictions. The angular-distance d between TALOS? (Shen

et al. 2009b) predictions /T ;wT and candidate angles

/DB;wDB is calculated as the number of TALOS? pre-

diction errors, D/T ;DwT past the first error bar.

Preliminary results using a harmonic penalty resulted in

improved fragment quality in regions where already accurate

fragments where identified, but reduced it significantly

where accurate fragment picking was already difficult. As

previously for the CS-Score, we found that individual bad

predictions would dominate the scores, causing partially

matching fragments to be discarded. Thus, we reformulated

the score using a sigmoid to flatten the extremes.

Revised SS-similarity: ITSS In the refined and final version

of the new TALOS? secondary structure score, replacing

ISS (Eq. 7), a sigmoid function is used, and the probability

of the occurrence of kDSSP is weighted with the TALOS?

(Shen et al. 2009b) secondary structure prediction’s con-

fidence CTSS to yield

ITSS ¼
ffiffiffiffiffiffiffiffiffiffi
CTSS

p
S PTSS kDSSPð Þ; 7; 5ð Þ ð9Þ

Rank weighted fragment scores The Phi/Psi-SquareWell

(Eq. 8) and TALOS-SS-Similarity (Eq. 9) scores can yield

large penalties for individual residues which disagree with the

predictions, which is not necessarily desirable when the

overall match is otherwise still good. To down-weight these

individual outliers and improve the odds of picking fragments

that disagree with the predictions at only one or two positions

the individual residue scores are ranked and a weight is

assigned for each rank r 2 1. . .Mf g. With M being the frag-

ment length, we compute the rank-dependent weight as

w rð Þ � M�1S r;�10;�7ð Þ: ð10Þ

This step has the effect of consistently down-weighting

the contribution made by the worst residue scores when

calculating the final fragment score. Finally, the fragment

scores are normalized by fragment size M to decrease their

relative contribution as fragment size increases.

Evaluating improvements of stage 4 The addition of phi/psi

constraints and reformulation of the secondary structure

constraints improved all three score metrics for both 3mers

and 9mers (Stage 4 of Fig. 1). The improvement was larger

for the average and worst fragments, showing that this for-

mulation of the constraints primarily serves to reject bad

fragments. For 9mers, this scoring scheme resulted in a

10–11 % improvement over MFR for the worst- and average

fragment metric, and an 8 % improvement for the best

fragment metric. For 3mers, the improvements were 6 % for

average-, and 8 % for the worst- and best fragment metric.

As a final check, because the phi/psi and secondary

structure predictions used in this stage are derived from the

chemical shift data we tested their independence from each

other and from the chemical shift score (Eq. 3), showing

that the scores contribute to fragment quality in different

ways and that the addition of the individual score provides

a cumulative benefit (Suppl. Fig. 2).

Final fragment quality

In its final form, the score of a fragment at position k

comprising of M residues is obtained by

M�1
XMþk�1

i¼k

I
ið Þ

d þ 1:5I
ið Þ

P þ I
ið Þ

R þ 0:25I
ið Þ

TSSw r
ið Þ

TSS

� �

þ 5:0I
ðiÞ
/ww r

ið Þ
/w

� �
ð11Þ

The weights were optimized for picking fragments with

low Ca-RMSD against reference structures as well as for

sampling low Ca-RMSD conformations in CS-Rosetta

structure calculations (data not shown). The targets used

for development of the fragment picker were not used in

the final benchmark set.

For both 9mer and 3mer fragments, less fragments with

RMSDs of 0.2–0.3 Å per residue and more fragments with

top-RMSDs (\0.15 Å per residue) are generated compared

to MFR (Fig. 3). The difference is less pronounced in the

3mers, probably because the proportion of 3mers in the

0.2–0.3 Å range was already low in MFR.

I/w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S
max 0; d /T;/DBð Þ � D/Tð Þ

D/T

; 2:5; 5

� �
þ S

max 0; d wT;/DBð Þ � DwTð Þ
DwT

; 2:5; 5

� �s

ð8Þ
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Because fragment RMSD alone is not sufficient to pre-

dict the impact of the fragments on 3D structure generation

in fragment assembly, we also quantified the secondary

structure accuracy of the fragments (Fig. 4). As expected,

using the chemical-shift based secondary structure predic-

tions of TALOS? for fragment selection (Eq. 9) has a

significant and positive impact on this metric. For both,

3mers and 9mers, the frequency of fragments with

80–100 % correct secondary structure assignments is

increased from *60 % for MFR to *80 % in R3FP

(Fig. 4a). More importantly, focusing on loop-residues one

finds in the 80–100 % category the dramatic improvement

in frequency from *20 % for MFR to *70 % for R3FP

(Fig. 4b). Thus, we were able to remove a strong anti-loop

bias that existed in MFR. A drawback of coordinate RMSD

as a quality metric is that compact structures such as

helices have an advantage relative to extended structures

such as loops, thus it is possible that some of the observed

helical bias in MFR stems from training exclusively

towards a reduction in RMSDs.

It is illuminating to examine the fragment quality at

individual positions rather than as an aggregated histogram.

Some representative examples for targets VpR247, argn

and Ncalmodulin, are shown in Fig. 5. The improvements

do not result in a general shift towards slightly more

accurate fragments, but rather result in dramatic improve-

ments of fragment accuracy in some of those regions, often

where no useful fragments were found by MFR. The

opposite case, that regions with reasonably accurate MFR

fragments are lost when switching to R3FP, is rarely seen.

The improvements in the 9mers tend to cover a wide

range of positions, while the differences between MFR and

R3FP in 3mers change rapidly with residue position

(Fig. 5). This behavior corrobates our previous analysis,

which suggested that MFR is overly sensitive to either bad

data or bad predictions on specific residues. For instance,

the narrow spike in 3mer quality from residue 31–33 in

NCalmodulin (Fig. 5c) is broadened in the 9mer quality to

residues 25–33 whose 9mer fragments all overlap with

residue 33, too. The scoring of both, 3mers and 9mers, in

MFR is affected by problems at the single position 33 of

NCalmodulin.

CS-Rosetta benchmark comparison

To test the performance of the fragment libraries in actual

3D structure generation we ran CS-Rosetta fragment

assembly on 23 targets for both, MFR and R3FP fragments.

The most important criterion for the success of CS-Rosetta

is how close to the native structure the fragment assembly

stage can sample. We selected the lowest 0.5 % by Ca-

RMSD and compute the average RMSD over this set

(Fig. 6), which we call spearhead-RMSD in the following.

A bootstrap analysis was used to calculate the standard

deviation of the spearhead-RMSD, and targets were labeled

better (green) or worse (red) if it decreased or increased by

more than two standard deviations, respectively. The new

fragment picker improves model quality for 6 of the 23

targets tested, and decreases it for 3. The remaining 14

targets maintain a similar RMSD. The percentage of targets

sampled within 2 Å to the reference is increased from 29 to

42 %, and the percentage of targets where sampling is

stuck over 4 Å is decreased from 38 to 29 %. Improved

spearhead-RMSDs coincide with an overall shift towards

lower RMSDS (Fig. 7a–f) as well as a shift towards lower

rosetta energies (Suppl. Fig. 3), indicating an overall

improvement in the models generated by fragment

assembly using the R3FP fragments. The R3FP fragment

picker protocol has also been tested on an independent set

Fig. 3 Fragment RMSD, MFR versus R3FP. Full backbone fragment

RMSDs are shown for the entire set of a 3mers and b 9mers, with

fragments selected by MFR in red and by the final version of R3FP in

blue. Both fragment sizes show a shift to lower RMSDs when using

R3FP, but the effect is larger for 9mers

J Biomol NMR (2013) 57:117–127 123
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of targets, not used during training, with similar results

(van der Schot et al. 2013).

Discussion

For fragment assembly to succeed, the fragment picker

needs to exclude non-productive fragments to narrow

down the search (Handl et al. 2011), while not making the

ultimate mistake of excluding the correct structure itself.

These can be assessed using two fragment quality mea-

sures, fragment coverage, which assesses whether the

fragment space includes the local structure of the target,

and fragment accuracy, which becomes lower as more

and more fragments deviate from the reference structure.

Given any possible fragment metric, its best values

inform on the fragment coverage, while its worst inform

on accuracy.

Fig. 4 Secondary Structure Accuracy, MFR versus R3FP. For each

residue we determine the percentage of the selected fragment

candidates that have the correct DSSP assignments. A histogram for

3mers (Dark tone) and 9mers (Light tone) produced by both MFR

(Red) and R3FP (Blue) shows how often the fragment’s secondary

structure assignments are accurate. a R3FP shows a marked

improvement in accuracy on the overall benchmark set, where the

number of residues with a [80 % match to the reference increased

from 60 to 80 % in both the 9 and 3mers. b This improvement is more

dramatic when restricted to target residues which DSSP assigns as

loop or as unstructured. MFR appears to assign a large amount of

wrong secondary structure to these residues, and when using R3FP

the number of residues obtaining a [80 % match to the reference

increased from 12 and 21 % to 65 and 85 %, for 3- and 9mers,

respectively

Fig. 5 Fragment RMSDs of representative targets. Fragment RMSDs

of MFR (red) and R3FP (blue) fragments of targets a VPR247,

b Argn, and c NCalmodulin, respectively. Solid lines show the

average full backbone RMSD at each fragment position, while the

dashed lines show the lowest RMSD values observed
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Generally, sampling space increases exponentially with

sequence length; so insufficient accuracy is the primary

reason why the naive fragment assembly algorithm of CS-

Rosetta fails for larger proteins. This problem, however,

can be overcome by using more sophisticated sampling

algorithms (Lange and Baker 2012) and additional sparse

restraints (Raman et al. 2010a; Lange et al. 2012). Inac-

curate constraints within the fragments, however, are hard

to overcome even with more thorough sampling methods.

Moreover, we observed that some rarely picked fragments

can provide a linchpin (Kim et al. 2009) and thus loss of

coverage in those (few) positions does not compensate for

gain of accuracy in the majority of positions.

The trade-off between accuracy (excluding less likely

fragments) and coverage (allowing all admissible frag-

ments) thus has to be chosen carefully. Unfortunately,

probing this trade-off requires carrying out the actual

fragment assembly to observe the functional utility of the

fragments during structure generation itself. A better

understanding of how to rank the functional utility of

fragments a priori, would greatly facilitate the training of a

fragment picker. Lacking such a hypothetical metric,

Fig. 6 Final fragment assembly benchmark. Compared are the

average Ca-RMSDs of the lowest 0.5 % by RMSD models (spear-

head-RMSD) for each target when using MFR (x-axis) or R3FP (y-

axis) fragments to generate models. Errors were calculated by the

standard deviation observed in a bootstrap analysis, and individual

targets were assigned as better or worse when the difference in

spearhead-RMSD was [4 standard deviations. From this analysis, 6

of 23 targets show significant improvement, and 3 targets get

significantly worse when using R3FP fragments

Fig. 7 RMSD distribution of CS-Rosetta generated models. Histo-

grams show the distribution of RMSD to reference structure for

models generated with CS-Rosetta from R3FP (blue) and MFR (red)

fragments, respectively. a–f Six significant improvements for R3FP.

g–i Three targets that got slightly worse using R3FP fragments
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however, we primarily optimized against the best fragment

RMSD while ruling out changes that cause large distur-

bances in secondary structure metrics. Additionally, we

frequently carried out full structure calculations to check

on the behavioral changes of fragment assembly caused by

changes to the fragment selection.

A general problem we detected in the original MFR and

R2FP:NNMAKE methods is the overuse of probability-

based empirical scoring terms such as Eq. 5, which yield

the penalty score as –log(p), where p denotes the proba-

bility of the scored feature in a database of known struc-

tures. We found two problems associated to such score

terms. First, rare fragment conformations are highly

penalized, which often leads to removal of important

linchpin fragments. Second, double-counting occurs, since

naturally the database contains more fragment candidates

with typical conformations than with rare conformations,

which already gives them a competitive advantage based

on their probability.

The overuse of –log(p)-scores is a pitfall that was hard

to detect at first, since predictions improve overall, if the

predictor is biased towards the more likely features.

Indeed, the bias towards helical fragments in the MFR

picker has a positive effect on average fragment RMSDs,

since choosing helices is often a good guess if nothing

better is known. Moreover, helices are compact and thus

yield lower RMSD than extended conformations that are

equally wrong. Our experience with fragment assembly

showed, however, that guessing with a bias towards com-

mon fragments is not as effective as keeping unclear

stretches of the target sequence unconstrained. This strat-

egy demands more from the sampling algorithm, but entails

less danger of catastrophic failure.

Consequently, while trying to improve both coverage and

accuracy, we ended up primarily flattening scores (Fig. 2a),

increasing tolerance for bad matching input (resonances,

phi/psi-predictions, and secondary structure predictions),

and overall reducing the reliance on –log(p)-scores. The

final score now just sums up how many comparisons are in

violation of the data, while relying for the prior information

about fragment conformations more on their frequency in

the candidate database than on additional –log(p)-rewards.

Conclusions

We have improved the overall quality of the CS-Rosetta

fragment picker by increasing its robustness against miss-

ing or difficult input data, and by adding the highly accu-

rate secondary structure and backbone torsion angle

predictions from TALOS?. This new protocol shows an

overall improvement in the quality of the generated frag-

ments and in the quality of models produced by CS-

Rosetta. The new code base also simplifies the task of

adding new score terms, constraints, or experimental data

to the existing protocol, setting the groundwork for future

development.

The new fragment picker algorithm is integrated into the

CS-Rosetta software available at www.csrosetta.org and is

activated by the pick_fragments command.
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